中华人民共和国国家计量技术规范

JJF XXXX—XXXX

视度管（筒）校准规范

Calibration Specification for dioptrometer

XXXX-XX-XX 发布

XXXX-XX-XX 实施

国家市场监督管理总局 发布
视度管（简）校准规范

Calibration Specification for dioptrometer

归口单位：全国光学计量技术委员会
主要起草单位：中国计量科学研究院
宁波市计量测试研究院
参加起草单位：国防科技工业光学一级计量站
深圳市计量质量检测研究院
中国航空工业集团公司北京长城
计量测试技术研究所

本规范委托全国光学计量技术委员会解释
本规范主要起草人：

李 飞 （中国计量科学研究院）
朱建平 （中国计量科学研究院）
徐聪恩 （宁波市计量测试研究院）

参加起草人：

王生云 （国防科技工业光学一级计量站）
李向召 （深圳市计量质量检测研究院）
崔岩梅 （中国航空工业集团公司北京长城计量测试技术研究所）
引言

JJF 1001《通用计量术语及定义》、JJF 1032《光学辐射计量名词术语及定义》、JJF 1059.1《测量不确定度评定与表示》和 JJF 1071《国家计量校准规范编写规则》共同构成支撑本规范编订的基础性系列规范。本规范为首次制定。
目 录

引 言 .. 1
1 范围 .. 1
2 引用文件 .. 1
3 术语和计量单位 .. 1
 3.1 视度 ... 1
 3.2 视度管 .. 1
4 概述 .. 2
5 计量特性 .. 3
 5.1 视度测量范围 .. 3
 5.2 视度示值误差 .. 3
 5.3 视度管目镜视度调节范围 .. 3
6 校准条件 .. 3
 6.1 环境条件 .. 3
 6.2 测量标准及其他设备 .. 3
7 校准项目和校准方法 .. 3
 7.1 校准项目 .. 3
 7.2 校准方法 .. 4
8 校准结果表达 ... 5
9 复校时间间隔 ... 5
附 录 A 校准原始记录参考格式 ... 7
附录 B 校准证书内页推荐格式 ... 8
附录 C 视度示值误差测量不确定度评定 ... 10
引 言

JJF 1071《国家计量校准规范编写规则》、JJF 1001《通用计量术语及定义》、JJF 1059.1《测量不确定度评定与表示》共同构成本校准方法制定的基础性系列规定。本自编校准方法为首次制订。
1 范围

本方法适用于视度管（筒）、视度计的校准。

2 引用文件

本规范引用了下列文件:

JJF 1001 通用计量术语及定义
JF 1059.1-2012 测量不确定度评定与表示
JJF 1071 国家计量校准规程编写规则

注明日期的引用文件，仅此日期版本适用于本规范，否则只有其最新版本（包括所有的修改单）适用于本规范。

3 术语和计量单位

3.1 视度 diopter

目视仪器轴上出射光线的会聚或发散程度，数值上等于以米为单位测得的目镜出瞳到像方焦点的距离的倒数。单位是米的倒数（m⁻¹）。出射光如果是会聚光束，此时像方焦点在目镜的出瞳一侧，视度就是正值；出射光若为发散光束，此时像方焦点在目镜的入瞳一侧，视度为负值；出射光若为是平行光束，此时视度为零。

图 1 视度

3.2 视度管 dioptrometer; dioptrictester

测量光学仪器视度的仪器，又叫视度筒，有时也称视度计。
4 概述

视度管结构如图2所示。视度管是一个物镜沿轴向移动的低倍望远镜。视度筒物镜调至其焦面与分划板重合为止，称为视度管的零位，在零位时视度管可看清无限远目标，在视度管目镜中能同时看清视度管分划板和无限远目标的像：如果被测仪器视度不为零，则无限远目标被被测仪器成像在有限距离上，被视度筒物镜再成像在它焦面附近，因而不和分划板重合，在目镜中不能同时看清楚分划板和无限远目标像；这时移动视度筒物镜，使它成的像与分划板重合，那么，从目镜中又能同时看清楚它们了。这种情况下，视度筒物镜移动量与被测仪器的视度有一定关系，根据这一关系，可由视度筒物镜移动量得到被测仪器的视度值。

视度管两种规格，一种是量程为-2.5m⁻¹～+2.5m⁻¹的视度管，一种是量程为-6m⁻¹～+6m⁻¹的视度管。
5 计量特性

5.1 视度测量范围:

5.2 视度示值误差:

量程为-2.5m～+2.5m的视度管最大允许误差：±0.3m

量程为-6m～+6m的视度管最大允许误差：±0.8m

5.3 目镜视度调节范围：±5 m

注：以上指标不是用于合格性判别，仅提供参考。

6 校准条件

6.1 环境条件

a) 环境温度：(23±5)℃；

b) 相对湿度：≤80％；

6.2 测量标准及其他设备

6.2.1 视度标准镜片

a) 测量范围：±0.5 m、±1m、±1.5m、±2m、±2.5m、±3m、±4m、±5m、±6m。其中+1.5m视度标准镜片分别为+0.5 m标准镜片和+1m标准镜片的叠加，-1.5m视度标准镜片分别为-0.5 m和-1m的叠加；+2.5m为+0.5 m和+2m的叠加；-2.5m的为-0.5 m和-2m的叠加。+5m为+1 m和+4m的叠加；-5m为-1 m和-4m的叠加；+6m为+2 m和+4m的叠加；-6m为-2 m和-4m的叠加。标准值为叠加校准值。

b) 不确定度 0.03m

6.2.2 标准视度管

量程为-6m～+6m：MPE：±0.4m

6.2.3 辅助设备:

1）视度专用检测装置或平行光管 波前平行性不大于8”

2）光电望远镜。

7 校准项目和校准方法

7.1 校准项目
7.1.1 视度测量范围

7.1.2 视度示值误差

7.2 校准方法

7.2.1 外观及功能性检查

目视检查部件安装是否牢固，表面有无影响计量性能的碰伤、划痕及影响校准结果的其它缺陷。

7.2.2 测量范围的校准

移动视度物镜，目视检查有效量程范围。

7.2.3 视度示值误差的校准

对于量程为-2.5 m⁻¹～+2.5 m⁻¹的视度管校准间隔为 0.5 m⁻¹；对于量程为-6 m⁻¹～+6 m⁻¹的视度管校准间隔为 1 m⁻¹。

a) 打开平行光管或视度检测专用装置的光源，打开光电望远镜的视频窗口，将光电望远镜对准平行光管，将光电望远镜的 CCD 调整到像面上。

b) 将视度管调节到零视度位置，然后将目镜和光电望远镜对接，并对准白色背景，调节视度管的目镜的视度，直到可以看清视度管目镜内的分划线。此时视度管处于零视度位置。

c) 将对接好的视度管和光电望远镜安放在平行光管的平行光路中，并将他们的光轴与平行光管光轴基本一致，此时调节视度物镜，直到看清平行光管中的分划线。记下此时视度值，即为零视度示值。

d) 将视度标准镜片逐个安放在检测装置的支座上，每个镜片至少独立测量三次并读数，取三次读数平均值作为该镜片的实际测量值，视度示值误差根据公式（1）计算。视度示值误差应符合 5.2 的要求。

\[d_o = \bar{D} - D_0 \] (1)

式中：
- \(d_o \) — 视度示值误差，m⁻¹；
- \(\bar{D} \) — 视度三次测量的平均值，m⁻¹；
- \(D_0 \) — 视度标准镜片标准值，m⁻¹。
量程为 -2.5m^{-1}～+2.5m^{-1} 的视度管，校准间隔为 0.5m^{-1}；量程为 -6m^{-1}～+6m^{-1} 的视度管校准间隔为 1m^{-1}。

7.2.3 目镜视度调节范围

将视度管调节到零视度位置，然后将目镜视度分别调节至正向最大，用标准视度管观察被测视度管的分划板像，并调节标准视度管的游标，测量其视度，分别记下其值。目镜视度调节范围应符合 5.3 的要求。

8 校准结果表达

校准结束后应出具校准证书，校准证书内页参考格式见附录 B。校准证书应准确、客观地报告校准结果。校准结果用校准数据的形式给出，并给出测量不确定评定，不确定度评定实例见附录 C。校准证书至少包含以下信息：

a) “校准证书”标题；

b) 实验室名称和地址；

c) 进行校准的地点；

d) 证书或报告的唯一性标识（如编号），每页及总页数的标识；

e) 送校单位的名称和地址；

f) 被校对象的描述和明确标识；

g) 进行校准的日期，如果与校准结果的有效性和应用有关时，应说明被校对象的接收日期；

h) 如果与校准结果的有效性和应用有关时，应对抽样程序进行说明；

i) 对校准所依据的技术规范的标识，包括名称及代号；

j) 本次校准所用测量标准的溯源性及有效性说明；

k) 校准环境的描述，如温度、湿度等；

l) 校准结果及其测量不确定度的说明；

m) 对校准规范的偏离的说明；

n) 校准证书或校准报告测试人、审核人和签发人的签名；

o) 校准结果仅对被校对象有效的声明；

p) 未经实验室书面批准，不得部分复制证书或报告的声明。

9 复校时间间隔
复校时间间隔一般不超过 12 个月。由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的，因此，送校单位可根据实际使用情况自主决定复校时间间隔。更换重要部件、维修或对仪器性能有怀疑时，应及时校准。
附录 A 校准原始记录参考格式

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>送检单位</td>
<td>样品名称</td>
<td>视度管</td>
<td>温度</td>
<td>相对湿度</td>
</tr>
<tr>
<td>单位地址</td>
<td>型号规格</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生产厂家</td>
<td>仪器编号</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>检测依据</td>
<td>证书编号</td>
<td>实测</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

检定使用的计量基(标)准装置（含标准物质）

<table>
<thead>
<tr>
<th>名称</th>
<th>测量范围</th>
<th>不确定/准确度等级</th>
<th>证书编号</th>
<th>证书有效期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1、外观：良好

2、视度测量范围

3、视度示值误差及不确定度：

单位：m⁻¹

<table>
<thead>
<tr>
<th>标称值</th>
<th>实测 1</th>
<th>实测 2</th>
<th>实测 3</th>
<th>实测误差</th>
<th>不确定度</th>
<th>标称值 1</th>
<th>实测 2</th>
<th>实测 3</th>
<th>实测误差</th>
<th>不确定度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

校准地点:

校准日期 | 校准 | 核验
校准证书内页推荐格式

B.1 校准证书第 2 页

证书编号：×××××

校准机构授权说明

校准所依据/参照的技术文件（代号、名称）

校准环境条件及地点：

<table>
<thead>
<tr>
<th>温度</th>
<th>℃</th>
<th>地点：</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿度</td>
<td>% RH</td>
<td>其它：</td>
</tr>
</tbody>
</table>

校准使用的计量基（标）准装置（含标准物质）/主要仪器

<table>
<thead>
<tr>
<th>名称</th>
<th>测量范围</th>
<th>不确定度/准确度等级</th>
<th>证书编号</th>
<th>证书有效期至 (YYYY-MM-DD)</th>
</tr>
</thead>
</table>

第 2 页 共 x 页
B.2 校准证书第 3 页

1. 外观：良好

2. 视度测量范围：

2. 视度示值误差及不确定度：

<table>
<thead>
<tr>
<th>标称值</th>
<th>示值误差</th>
<th>不确定度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>+1.0</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>+2.0</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>+3.0</td>
<td>-3.0</td>
<td></td>
</tr>
<tr>
<td>+4.0</td>
<td>-4.0</td>
<td></td>
</tr>
<tr>
<td>+5.0</td>
<td>-5.0</td>
<td></td>
</tr>
<tr>
<td>+6.0</td>
<td>-6.0</td>
<td></td>
</tr>
</tbody>
</table>

说明：
复校时间间隔：视度管的建议复校时间间隔为一年。
视度示值误差测量不确定度评定

1 测量模型

采用视度标准镜片对视度管的视度示值误差校准时，建立测量模型如下：

\[d_D = \bar{D} - D_0 \]

式中：
- \(d_D \) — 视度示值误差，m⁻¹；
- \(\bar{D} \) — 视度三次测量的平均值，m⁻¹；
- \(D_0 \) — 视度标准值，m⁻¹。

2 合成标准不确定度的计算公式

根据测量模型和不确定度传播律，示值误差 \(d_D \) 的合成标准不确定度 \(u_c \) 为：

\[u_c(d_D) = \sqrt{\left(\frac{\partial d_D}{\partial D} u(D) \right)^2 + \left(\frac{\partial d_D}{\partial D_0} u(D_0) \right)^2} \]

式中：
- \(u(D) \) 为测量重复性引入的标准不确定度
- \(u(D_0) \) 为由标准镜片引入的标准不确定度
- 灵敏系数：\(c_1 = \frac{\partial d_D}{\partial D} = 1 \); \(c_2 = \frac{\partial d_D}{\partial D_0} = 1 \)

3 不确定度分量评定

3.1 由测量重复性引入的标准不确定度 \(u(D) \)

用视度标准镜片对视度管进行 10 次独立重复测量，以校准点 2.0 m⁻¹ 为例，测量数据如表 C.1 所示。根据贝塞尔公式计算单次测得值的实验标准偏差。

\[s(D) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^2} \approx 0.094 \text{ m}^{-1} \]

校准时以 3 次测量的平均值作为最佳估计值，所以：

\[u(D) = s(D) / \sqrt{3} = 0.054 \text{ m}^{-1} \]

以校准点 6.0 m⁻¹ 为例，测量数据如表 C.1 所示。根据贝塞尔公式计算单次测得值的实验标准偏差。
\[
\sigma(D) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \approx 0.189 \text{ m}^{-1}
\]

校准时以 3 次测量的平均值作为最佳估计值，所以:

\[
u(D) = \frac{\sigma(D)}{\sqrt{3}} = 0.11 \text{ m}^{-1}
\]

表 1 校准数据

<table>
<thead>
<tr>
<th>校准点</th>
<th>测量值</th>
<th>平均值</th>
<th>标准偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>-6.0</td>
<td>-6.5</td>
<td>-6.3</td>
<td>-6.2</td>
</tr>
</tbody>
</table>

3.2 视度标准镜片引入的标准不确定度 \(u(D) \)

从标准镜片证书可知，视度标准镜片修正值的不确定度为 \(U = 0.03 \text{ m}^{-1} \ (k=2) \)，因此由标准镜片引入的不确定度为

\[
u(D) = 0.015 \text{ m}^{-1}
\]

4 标准不确定度汇总见表 2

表 2 标准不确定度汇总表

<table>
<thead>
<tr>
<th>校准点</th>
<th>标准不确定度来源</th>
<th>标准不确定度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0m(^{-1})</td>
<td>测量重复性</td>
<td>0.054m(^{-1})</td>
</tr>
<tr>
<td>2.0m(^{-1})</td>
<td>标准镜片</td>
<td>0.015m(^{-1})</td>
</tr>
<tr>
<td>-6.0m(^{-1})</td>
<td>测量重复性</td>
<td>0.11</td>
</tr>
<tr>
<td>-6.0m(^{-1})</td>
<td>标准镜片</td>
<td>0.015</td>
</tr>
</tbody>
</table>

5 计算合成标准不确定度

各标准不确定度分量互不相关，故合成标准不确定度 \(u_c(D) \) 为在 2.0m\(^{-1}\) 处

\[
u_c(D) = \sqrt{u(D)^2 + u(D_0)^2}
\]
\[
u_c(d) = \sqrt{\left[\frac{\partial d}{\partial D} u(D) \right]^2 + \left[\frac{\partial d}{\partial D_0} u(D_0) \right]^2} = \sqrt{u(D)^2 + u(D_0)^2} = 0.56 \text{m}^{-1}
\]

（6）

\(u_c(d)\) 在 -6.0 m^{-1} 处为 0.12 m^{-1}

取 \(k=2\)，则扩展不确定度：

\[
U(d) = ku_c(d) = 2u_c(d) = (0.2 : 0.4) \text{m}^{-1}
\]

（7）

7 结论

经评定，被测视度管的示值误差不确定度为：

\[
U(d) = ku_c(d) = (0.2 : 0.4) \text{m}^{-1} (k=2)
\]

（8）